Model Building Process

- 1. Create healthy adult model in PK Sim see Compound File and Healthy Adult Individual and Population Files below
- 2. Scale healthy adult model to children in PK Sim see Child Individual and Population Files below
- 3. Export child model to MoBi and add ECMO compartment see MoBi file
- 4. In MoBi add Edema Disease State see MoBi file
 - a. Assume XX% increase in total body weight due to edema
 - b. Modify fraction interstitial (F_{int}) in Parameter Start Values by assigning the relative increase in weight to the interstitial compartment of each organ
- 5. Export model back to PK Sim for population simulations
 - a. For the Edema model a special Edema Population needs to be created
 - b. The edema values will be automatically populated into the population file in PK Sim for all parameters except Fat F_{int}, Muscle F_{int}, and Lung fraction vascular (F_{vasc}). These values either have ontogeny assigned to them (Fat F_{int}, Muscle F_{int}) or have differences based on gender (Lung F_{vasc}). As such, PK Sim will overwrite any MoBi values for these three parameters
 - c. To create the Edema Population:
 - i. Increase all organ volumes based on XX% edema
 - ii. Modify Fat Fint, Muscle Fint, and Lung Fvasc according to step 4 above
 - d. In the population file replace alpha-1 acid glycoprotein ontogeny based on Maharaj et al¹ using the following equation:

$$= \frac{Age (days)^{0.735}}{11.53^{0.735} + Age (days)^{0.735}}$$

e. In PK Sim change Protein Ratio (interstitial/plasma) from default 0.37 to 1

Reference

 Maharaj AR, Gonzalez D, Cohen-Wolkowiez M, Hornik CP, Edginton AN. Improving Pediatric Protein Binding Estimates: An Evaluation of alpha1-Acid Glycoprotein Maturation in Healthy and Infected Subjects. Clin Pharmacokinet. Aug 4 2017.

Fluconazole Compound File	Fluconazole Compound File		
Basic Physico-chemistry			
Is small molecule:	Yes		
Molecular Weight	306.27 g/mol		
Effective Molecular Weight	272.27 g/mol		
pKa value	2.56		
Compound type	Base		
Lipophilicity	1.10		
Fraction Unbound	0.89		
Solubility	$1.00 \mu g/mL$		
Solubility Reference pH	7		
Solubility gain per charge	1000		
Absorption			
Specific Intestinal Permeability	2.22 x 10-6		
Specific Organ Permeability	8.89 x 10-4		
Distribution			
Partition coefficients	Rogers and Rowland		
Cellular permeabilities	PK-Sim Standard		
Metabolism			
UGT2B7			
Process Type:	Intrinsic clearance – First Order		
Volume (liver)	2.36L		
Fraction intracellular (liver)	0.67		
Intrinsic clearance	8.00 x 10-3 1/min		
Specific clearance	5.09 x 10-3 1/min		
Transport & Excretion			
Renal Clearance			
GFR fraction	0.17		

Healthy Adult Individual File		
Biometrics		
Species	Human	
Population	European (ICRP, 2002)	
Gender	Male	
Age	30 y	
Weight	73 kg	
Height	176 cm	
BMI	23.57 kg/m^2	
Anatomy and Physiology		
Default values		
Expression		
Metabolizing Enzymes	UGT2B7 (PK Sim Gene Database)	
Protein Binding Partners	ORM1 (PK Sim Gene Database)	

Healthy Adult Population File		
Demographics		
Number of individuals	1000	
Proportion of females	50%	
Age Range	18-55 y	
Expression		
Metabolizing Enzymes	UGT2B7 (PK Sim Gene Database)	
User Defined Variabilty		
Enzymes, Transporters, and Binding Partners	UGT2B7 (Mean 1.00 µmol/l; Geometric Stand Dev 1.34)	

Child Individual File		
Biometrics		
Species	Human	
Population	White American (NHANES, 1997)	
Gender	Male	
Age	104 d	
Weight	4.6 kg	
Height	58.12 cm	
BMI	13.62 kg/m^2	
Anatomy and Physiology		
Default values		
Expression		
Metabolizing Enzymes	UGT2B7 (PK Sim Gene Database)	

Child Population File		
Demographics		
Number of individuals	1000	
Proportion of females	50%	
Age Range	1-392 d	
Expression		
Metabolizing Enzymes	UGT2B7 (PK Sim Gene Database)	
User Defined Variabilty		
Enzymes, Transporters, and Binding Partners	UGT2B7 (Mean 1.00 µmol/l; Geometric Stand Dev 1.34)	